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Abstract

In this article a variance propagation algorithm is derived for the computation of heat conduction problems with
parameters which ~uctuate stochastically in time[ The method is based on the _nite element discretization of the Fourier
equation[ The algorithm involves the numerical solution of systems of Sylvester and Lyapunov equations and has been
implemented on top of an existing _nite element heat conduction package[ Based on some illustrative examples\ it is
shown that the method compares favourably to the Monte Carlo method in terms of accuracy and computer time[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

ai coe.cients of AR"m# process
A state space companion matrix
B auxiliary vector in state space form of autoregressive
random process
C _nite element capacitance matrix
E mean value operator
f"x\ t# probability density function of x"t#
f _nite element thermal load vector
G heat conduction domain
h surface heat transfer coe.cient ðW:m1 >CŁ
I identity matrix
k thermal conductivity ðW:m >CŁ
K _nite element conductance matrix
L length of slab ðmŁ
nnod number of nodes
n outward normal to convection surface
9 null matrix
Q heat generation rate ðW:m2Ł
t time ðsŁ
T temperature ð>CŁ
T9 initial temperature ð>CŁ
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T� ambient temperature ð>CŁ
u nodal temperature vector
Va\b covariance matrix of random vectors a and b

w Gaussian white noise process
x arbitrary random parameter
x state vector in state space form of autoregressive pro!
cess
z position vector[

Greek symbols
1G boundary surface
d Dirac delta
Dt time step ðsŁ
rc volumetric heat capacity ðJ:m2 >CŁ
s standard deviation[

0[ Introduction

For the numerical solution of heat conduction prob!
lems it is usually assumed that all parameters are known[
In reality\ the product properties "thermophysical
properties# as well as the external parameters "initial and
ambient temperature\ surface heat transfer coe.cient#
may change randomly both as a function of space and
time coordinates[ For example\ the chemical composition
and physical structure of many agricultural materials are
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very heterogeneous and are a function of several factors
such as the harvest time and weather conditions\ and the
origin of the product[ The thermophysical properties are
a}ected by this heterogeneity and can vary inside the
product as a function of the space coordinates[ These
properties are essentially deterministic\ and if a method
would be available to measure them with su.cient spatial
resolution and accuracy they could be used as such in
the numerical solution of the heat conduction problem[
However\ because of experimental limitations this is
usually inpractical\ and often it is more convenient to
consider them as multidimensional random quantities[
Other parameters\ such as the temperature of the con!
vective ~uid ~owing around the conducting solid\ are
intrinsically stochastic and may change in an unpredict!
able way during the heat transfer process[ For example\
the temperature inside a refrigerated room may ~uctuate
as a function of time as a consequence of unpredictable
openings of refrigerator or oven doors\ actions of the
temperature control system\ ambient conditions outside
the refrigerated room\ changes of solar radiation ~ux[ As
a consequence\ the temperature distribution inside the
heated object is also random and can only be speci_ed
meaningfully by means of statistical characteristics such
as its mean value\ variance and probability density func!
tion[

A straightforward statistical approach to the solution
of random heat conduction problems is the Monte Carlo
method[ In this method a "pseudo#random sample of the
stochastic parameters is generated by the computer and
the corresponding heat transfer problem is numerically
solved[ The solution is stored and the process is repeated
for a large number of times[ In the end\ the statistical
characteristics of the transient temperature _eld are esti!
mated using classical inference techniques[ The con!
siderable number of repetitive simulations required to
obtain an acceptable level of accuracy is a major draw!
back of the Monte Carlo method\ particularly when the
heat transfer problem must be solved by means of a
_nite di}erence or _nite element method[ Further\ the
stochastic parameter set must be completely speci_ed
in the probabilistic sense\ including probability density
functions[

Several alternative methods have been proposed in the
literature "for an overview\ see ref[ ð0Ł#[ Of particular
interest are those based on _nite di}erence and _nite
element methods\ as they can be applied where no ana!
lytical solutions can be obtained[ Finite element per!
turbation methods have been discussed by several
authors ð1\ 2\ 3Ł to compute the mean and the variance
of the temperature at arbitrary space!time coordinates in
the heated objects for parameters of the random variable
or random _eld type[ Tasaka ð4\ 5Ł calculated statistical
moments up to the second order of linear one!dimen!
sional heat conduction problems with stochastic initial
and boundary conditions using analytical and numerical

_nite element:_nite di}erence based techniques[ Nicola(�
and De Baerdemaeker ð6Ł derived a variance propagation
algorithm for the solution of heat conduction problems
with stochastic initial and boundary conditions[ The
algorithm involved the numerical solution of a Lyapunov
matrix di}erential equation[ Madera ð0Ł suggested a
method to calculate mean values\ correlations and vari!
ances of non!stationary temperature _elds in three!
dimensional bodies of complicated shape and with ran!
dom coe.cients and stochastic initial and boundary con!
ditions[ The method involves the stochastic _nite element
and _nite di}erence discretization of the random heat
conduction equation and the solution of Volterra stoch!
astic integral equations[ The moments of the temperature
vector are obtained in the form of converging matrix
series[

In this article the variance propagation algorithm
described in ref[ ð6Ł is extended to stochastic heat con!
duction problems with autoregressive parameters of arbi!
trary order[ No spatial randomness will be considered[

1[ Stochastic heat conduction model

It is assumed that the temperature _eld T"z\ t#\ with z

and t the space and time coordinate\ is described by the
linear heat conduction equation de_ned over a spatial
domain G with boundary 1G

k91T¦Q � rc
1T
1t

"0#

subjected to the initial and convection boundary con!
dition

T"z\ t# � T9"z# at t � t9 "1#

k
1

1n
T"z\ t# � h"t#ðT�"t#−T"z\ t#Ł on 1G "2#

It is assumed that all parameters are stationary random
processes[ The mean x¹ and covariance Vx\x of a stationary
process x with probability density function f"x\ t# are
de_ned by

x¹ � E"x#

, g
�

−�

xf"x\ t# dx

Vx\x"Dt# � E"ðx"t#−x¹ Ł ðx"t¦Dt#−x¹ #Ł#
A Gaussian stationary white noise process w with covari!
ance

Vw\w"Dt# � s1
wd"Dt# "3#

where d is the Dirac delta\ can be used to describe very
rapid unpredictable ~uctuations[ Sample values of w are
uncorrelated no matter how close together in time they
are[ However\ white noise does not exist in reality as it
has an in_nite energy content[ Autoregressive processes
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provide a tool to incorporate ~uctuations which change
more smoothly as a function of time[ An autoregressive
random process of order m is de_ned by the following
stochastic di}erential equation

dm

dtm
x"t#¦a0

dm−0

dtm−0
x"t#¦= = =¦amx"t# � w"t# "4#

where a0\ a1\ [ [ [ \ am are constants\ m − 0\ and w"t# is
a stationary Gaussian white noise process with mean
w¹ � amx¹ [ The time scale of the ~uctuations is dependent
on the coe.cients a0\ [ [ [ \ am\ and their high frequency
content decreases with increasing order m[

The "Gaussian# random variable initial condition cor!
responding to the stochastic di}erential equation "4# is
de_ned as

E ðx"t9#Ł � x¹ "5#

E ðx"t9−x#Ł1 � s1
x "6#

Note that a random variable parameter x can be modeled
as a trivial case of an AR"0# process ]

d
dt

x � 9 "7#

AR"m# processes are a special case of the class of physi!
cally realizable stochastic processes which comprise most
of the random processes seen in practice ð7Ł[

It is convenient to write the autoregressive process "4#
in the following state space form ð8Ł ]

d
dt

x"t# � Ax"t#¦Bw"t# "8#

where

x �

K

H

H

H

H

H

k

x

dx:dt

*

dm−1x:dtm−1

dm−0x:dtm−0

L

H

H

H

H

H

l

B �

K

H

H

H

H

H

k

9

9

*

9

0

L

H

H

H

H

H

l

A �

K

H

H

H

H

k

9 0 [ [ [ 9

* = = [ *

9 9 [ [ [ 0

−am −am−0 [ [ [ −a0

L

H

H

H

H

l

The vector x is called the state vector\ the matrix A the
companion matrix and the vector B is an auxiliary vector[
In this article it will be assumed that T�\ h and Q are
autoregressive processes of order mT�

\ mh\ and mQ\
respectively\ as de_ned by the following state space equa!
tions

d
dt

xT�
"t# � AT�

xT�
"t#¦BT�

wT�
"t# "09#

d
dt

xh"t# � Ahxh"t#¦Bhwh"t# "00#

d
dt

xQ"t# � AQxQ"t#¦BQwQ"t# "01#

with wT�
\ wh\ wQ white noise processes of in general

di}erent covariance[ Observe that\ whereas the time
dependency of T� and Q is obvious\ h is traditionally
assumed to be dependent of the temperature only[
However\ according to Newton|s law of cooling h is
de_ned as the proportionality constant between local
heat ~ux and the temperature di}erence between the sur!
face of the conductive medium and the ~uid[ The values
of the local heat ~ux and temperature di}erence between
the boundary of the conductive medium and the ~uid can
be measured using heat ~ux sensors and temperature
probes and generally change in time[ Consequently\
according to the above de_nition h can also vary as a
function of time[ Although the physical signi_cance of
an instantaneous surface heat transfer coe.cient can be
questioned\ in this article a pragmatic approach will be
followed and h will be considered as a parameter which
depends on time[ The presence of stochastic disturbances
can be expected in turbulent conditions\ where the vel!
ocity of the ~uid\ and\ hence\ the surface heat transfer
coe.cient\ is known to ~uctuate randomly around a
mean value[

As the thermophysical properties k and rc usually do
not change as a function of time\ they are modeled as
random variables by means of the following trivial
di}erential equations

d
dt

k �
d
dt

rc � 9 "02#

with appropriate initial conditions[ Obviously\ T9 is mod!
eled as a random variable as well[

2[ Variance propagation algorithm

Realistic heat conduction problems often involve com!
plicated geometrical shapes\ non!uniform initial tem!
perature distributions and time!varying surface heat
transfer coe.cient or ambient temperatures[ Usually no
analytical solution is available\ and the Fourier equation
must be solved using an appropriate numerical technique[
In this article the _nite element method has been applied[

Galerkin _nite element discretization of equation "0#
subject to equations "1# and "2# over a mesh of nnod nodes
yields the following di}erential system ð09Ł

C
d
dt

u¦Ku � f "03#

with u � ðu0 u1 [ [ [ unnod
ŁT the overall nodal temperature

vector\ C the capacitance matrix and K the conductance
matrix\ both nnod×nnod matrices\ and f a nnod×0 vector[
K is a function of k and h ^ C of rc\ and f of h\ Q and T�[

Equations "03# and "09#Ð"02# can be stacked con!
veniently in the following global system
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d
dt

x"t# � gðx"t#\ tŁ¦hðx"t#\ tŁw"t# "04#

where

x �

K

H

H

H

H

H

H

H

H

k

u

xT�

xh

xQ

k

rc

L

H

H

H

H

H

H

H

H

l

"05#

g �

K

H

H

H

H

H

H

H

H

k

C−0"−Ku¦f#

AT�
xT�

¦BT�
w¹ T�

Ahxh¦Bhw¹ h

AQxQ¦BQw¹ Q

9

9

L

H

H

H

H

H

H

H

H

l

"06#

h �

K

H

H

H

H

H

H

H

H

k

9 9 9

BT�
9 9

9 Bh 9

9 9 BQ

9 9 9

9 9 9

L

H

H

H

H

H

H

H

H

l

"07#

w � &
wT�

−w¹ T�

wh−w¹ h

wQ−w¹ Q
' "08#

with 9 null vectors of appropriate dimension\ and

Vw\w"Dt#,Eðw"t#wT"t¦Dt#Ł � d"t#&
s1

w\T�
9 9

9 d1
w\h 9

9 9 d1
w\Q
'
"19#

It can be shown ð00Ł that a _rst order approximation
of the mean value x¹ , E"x# and the covariance matrix
Vx\x , Eð"x−x¹ #"x−x¹T#Ł of x can be calculated at an arbi!
trary time from the following system

d
dt

x¹ "t# � gðx¹ "t#\ tŁ "10#

d
dt

Vx\x"t# �
1gðx¹ "t#\ tŁ

1x¹
Vx\x"t#

¦Vx\x"t# 6
1gðx¹ "t#\ tŁ

1x¹ 7
T

¦hðx¹ "t#\ tŁVw\w"t#hT ðx¹ "t#\ tŁ "11#

After substitution of equations "05#Ð"08# in equations

"10# and "11# and subsequent rearrangement\ the fol!
lowing system is obtained

d
dt

u¹ � CÞ−0"−KÞu¹¦f¹# "12#

d
dt

Vu\u � CÞ−0 $−KÞu¹Vu\u−
1K

1k
u¹VT

u\k

−
1C

1rc
du¹

dt
VT

u\rc¦
1f

1T�

VT
u\T�

¦0
1f

1h
−

1K

1h
u¹1VT

u\h¦
1f

1Q
VT

u\Q%
¦$−KÞu¹Vu\u−

1K

1k
u¹VT

u\k−
1C

1rc
du¹

dt
VT

u\rc

¦
1f

1T�

VT
u\T�

¦0
1f

1h
−

1K

1h
u¹1VT

u\h¦
1f

1Q
VT

u\Q%
T

CÞ−T "13#

d
dt

Vu\xT
�

� CÞ−0 0−KÞVu\xT
�

¦
1f

1T�

VT�\xT
�1¦Vu\xT

�

AT
T�

"14#

d
dt

Vu\xh
� CÞ−0 $−KÞVu\xh

¦0
1f

1h
−

1K

1h
u¹1Vh\xh%¦Vu\xh

AT
h

"15#

d
dt

Vu\xQ
� CÞ−0 0−KÞVu\xQ

¦
1f

1Q
VQ\xQ1¦Vu¹\xQ

AT
Q "16#

d
dt

Vu\k � CÞ−0 0−KÞVu\k−s1
k

1K

1k
u¹1 "17#

d
dt

Vu\rc � CÞ−0 0−KÞVu\rc−s1
rc

1C

1rc

d
dt

u¹1 "18#

where the notation CÞ−T denotes the transpose of the
inverse of CÞ[ CÞ\ KÞ and f¹ are assembled using the mean
values of rc\ k\ T�\ h\ and Q[ The initial condition for
equation "12# is given by

u¹ "t � 9# � u¹9 "29#

Vu\u � s1
T9

I "20#

where I is an nnod×nnod unity matrix[ Further\ since the
initial temperature is uncorrelated with k\ rc\ h\ T�\ and
Q\ the other initial conditions are equal to null matrices
of appropriate dimension[ Equations "12#Ð"20# constitute
the variance propagation algorithm for stochastic heat
conduction problems[

Observe that the above algorithm can be extended to
take into account nonlinear heat conduction with tem!
perature dependent thermal properties since equations
"10# and "11# are applicable to general nonlinear systems[
The corresponding algorithm has a similar overall struc!
ture as the above algorithm and has been described in
detail in ref[ ð01Ł[ As it is essentially based on a lin!
earization of the _nite element formulation of the "non!
linear# heat conduction equation\ it can however be
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expected to be su.ciently accurate for smooth nonlinear
heat conduction problems only[ The applicability of this
algorithm for heat conduction problems with phase
changes is currently being investigated by the authors[

An algorithm which takes into account possible stat!
istical correlations between random parameters has also
been derived in ref[ ð01Ł[

3[ Implementation

Equation "13# is of the general form

d
dt

V"t# � AV"t#¦V"t#AT¦B"t#

with V\ A\ and B square matrices of equal dimension\
and is called a Lyapunov matrix di}erential equation[
Equations "14#Ð"16# are of the general form

d
dt

V"t# � AV"t#¦V"t#B¦C"t# "21#

with A\ B square matrices\ and V and C matrices which
are in general not square[ Equation "21# is called a Syl!
vester matrix di}erential equation[ Equations "17# and
"18# are of the form

CÞ
d
dt

V"t#¦KÞV"t# � h"t#

with CÞ\ KÞ the _nite element matrices\ and V and h vectors
of dimension nnod[ This structure is similar to that of
equation "12#\ and further on it will be outlined that this
fact can be exploited advantageously[

The matrices VxT
�

\x
T

�

\ Vxh\xh
\ and VxQ\xQ

in equations "14#Ð
"16# can be computed by straightforward application of
the variance propagation algorithm to the equations
"09#Ð"01#\ respectively\ which yields for example for T�

d
dt

VxT
�

\x
T

�

� AT�
VxT

�
\x

T
�

¦VxT
�

\x
T

�

AT
T�

¦BT�
s1

T�
BT

T�
"22#

It can be proven that AR"m# processes driven by station!
ary white noise are stationary ð00Ł[ This implies that the
mean and the covariance of the AR"m# process does not
change in time[ Consequently\ the time derivatives in the
left hand sides of equation "22# vanish and the following
algebraic matrix Lyapunov equation is obtained

AT�
VxT

�
\x

T
�

¦VxT
�

\x
T

�

AT
T�

¦BT�
s1

T�
BT

T�
� 9 "23#

Similarly\

AhVxh\xh
¦Vxh\xh

AT
h ¦Bh¦s1

hB
T
h � 9 "24#

AQVxQ\xQ
¦VxQ\xQ

AT
Q¦BQ¦s1

QBT
Q � 9 "25#

The above equations can now be combined conveniently
in the algorithm outlined in Table 0[

The algorithm was programmed on top of the existing
_nite element code DOT ð02Ł[ Step 1 is calculated in

Table 0
Variance propagation algorithm

Step 0 Computer u¹ from equation "12# with initial con!
dition equation "29#

Step 1 Solve the Lyapunov matrix equations "23#Ð"25#

Step 2 Compute Vu\xT
�

\ Vu\xh
\ Vb\xQ

\ Vu\k\ and Vu\rc from
equations "14#Ð"18#

Step 3 Compute Vu\u"t# by solving the Lyapunov matrix
di}erential equation "13#

advance\ as well as the partial derivatives of K\ C and f

with respect to the random parameters[ The latter can be
assembled elementwise in the same way as K\ C and f

themselves ð3Ł[ The other steps are merged into a time
stepping scheme in which the mean temperature vector
and all covariance matrices are updated each time step[
As in the original code\ the linear di}erential systems
"12#\ "17# and "18# are solved using an implicit Euler
_nite di}erence algorithm\ e[g[\

0
C

Dt
¦K1 ut¦Dt−

C

Dt
ut � ft¦Dt "26#

Observe that the matrix CÞ:Dt¦KÞ is to be triangularized
only once[

The Lyapunov and Sylvester di}erential systems are
also discretized using an implicit Euler method\ and the
resulting algebraic Lyapunov and Sylvester algebraic sys!
tems are solved as described in ref[ ð03Ł[ The algorithm
involves the Schur decomposition of a matrix which also
must be done only once\ so that some additional com!
puting time economization is possible[ More details can
be found in ref[ ð01Ł[

4[ Results and discussion

The variance propagation algorithm yields essentially
a _rst order approximation of the mean value and covari!
ance matrix of the temperature vector[ In the test prob!
lems several parameters are considered to be random at
the same time in order to "i# investigate whether still
an acceptable accuracy and e.ciency could be obtained
when comparing Monte Carlo simulations with the vari!
ance propagation algorithm and "ii# to provide more
realistic test cases[ In ref[ ð01Ł a good agreement has been
shown between the results obtained with the variance
propagation algorithm and with the Monte Carlo method
when each individual parameter was allowed to vary at
a time[

The AR"m# process samples for the Monte Carlo simu!
lations were generated by numerical solution of the gov!
erning di}erential equations with arti_cially generated
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white noise sequences[ Gaussian white noise was gen!
erated using NAG random generator G94DDF[ All test
problems were solved on a HP 8999:619 UNIX work!
station[

4[0[ Example 0[ Parallel sided slab with heat `eneration

The _rst test problem consisted of a parallel sided metal
slab with length L � 09 cm[ The boundary at x � 9 cm
is adiabatic\ whereas the boundary at x � L is kept at
9>C[ The thermophysical properties are random variables
with k � 099 W:m >C ^ sk � 9[0×k¹ ^ rc � 6 = 095 J:m2 >C ^
src � 9[0×rc[ Inside the slab heat is generated according
to a AR"1# process "4#Ð"3# with a0 � 9[961\ a1 � 9[99961\
s1

w � 0[9257×095 and QÞ � 095 J:m2[ It can be calculated
ð01Ł that sQ � 9[0×QÞ[ The initial temperature is a ran!
dom variable with TÞ9 � 9>C\ sT9

� 0>C[
For the _nite element analysis the region ð9\LŁ was

subdivided in 09 identical quadrilateral elements with
four nodes per element "only two dimensional planar and
axisymmetric elements are provided in the DOT _nite
element code# aligned parallel to the heat ~ow[ All four
edges of the _nite elements were of equal size[ The bound!
ary of the computational grid at x � 9 and the boundaries
parallel to x!axis were adiabatic\ and the boundary at
x � L was kept at 9>C[ Dt was set at 09 s for the transient
analysis[ Preliminary deterministic simulations showed
that the global error of the _nite element approximation
with respect to the analytical solution was of the order
of 9[0>C[

A sample of the random process heat generation and
the corresponding temperature course at various posi!
tions inside the slab are shown in Fig[ 0[ As expected the
magnitude of the ~uctuations of the temperature inside
the slab increase with increasing distance from the deter!
ministic boundary at x � L[ In Figs 1 and 2 the time
course of the mean and the variance of the temperature
is shown for three di}erent positions in the slab[ There is
clearly a good agreement between the results obtained by
means of the variance propagation algorithm aned the
Monte Carlo method with 0999 runs[ However\ the
variances obtained by means of the Monte Carlo method
with 099 runs are scattered[

For comparison purposes the computational times
were normalized with respect to the time to solve a deter!
ministic problem "0[3 s#[ The variance propagation
algorithm required 5[3 times units\ whereas the Monte
Carlo method required 017 "099 runs# and 0163 "0999
runs# time units[

4[1[ Example 1[ Beam with non!square cross section and
internal heat `eneration

The second test problem consisted of a beam of in_nite
length with non!square cross section "Fig[ 3#[ At the four
sides of the geometry a convection boundary condition

was applied[ All random processes are of the type AR"0#\
with a0 � 9[90[ The thermophysical properties are ran!
dom variables with k¹ � 0[9 W:m >C\ rc � 0[9×095 J:m2

>C\ sk � 9[0×k¹ and src � 9[0×rc[ The heat generation
is a random process with s1

w � 1×095\ QÞ � 0 = 094 W:m2\
and sQ � 9[0×QÞ[ For the boundary condition\ h¹ � 099
W:m1 >C\ TÞ� � 9>C\ s1

w\h � s1
w\T�

� 1[9\ sh � 9[0×h¹ and
sT�

� 09>C[ The initial temperature is a random variable
with TÞ9 � 9>C\ sT9

� 09>C[
The _nite element grid consisted of 099 quadrilateral

elements with four nodes:element\ yielding a total of 010
nodes[ The time step was equal to 59 s[

In Figures 4 and 5 the results obtained by means of the
di}erent methods are compared[ As with the _rst test
problem\ there is a good agreement between the results
obtained with the variance propagation algorithm and
the Monte Carlo method with 0999 runs[ The variances
calculated by means of the Monte Carlo method with 099
runs di}er considerably with those calculated by means of
the other methods[ For short times it can be observed that

Fig[ 0[ Realization of stochastic heat generation and cor!
responding temperature at various positions in parallel sided
slab[

Fig[ 1[ Mean temperature at various positions in parallel sided
slab with stochastic parameters ^ * ] variance propagation al!
gorithm ^ � ] Monte Carlo "nMC � 099# ^ P ] Monte Carlo
"nMC � 0999#[
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Fig[ 2[ Temperature variance at various positions in parallel
sided slab with stochastic parameters ^ * ] variance propagation
algorithm ^ � ] Monte Carlo "nMC � 099# ^ P ] Monte Carlo
"nMC � 0999#[

Fig[ 3[ Finite element grid of a beam with non!square cross
section[

Fig[ 4[ Temperature variance at the position "x\ y# �"2 cm\ 4
cm# of the beam[ * ] variance propagation algorithm ^ � ]
Monte Carlo "nMC � 099# ^ P ] Monte Carlo "nMC � 0999#[

Fig[ 5[ Temperature variance at the position "x\ y# �"2 cm\ 4
cm# of the beam[ * ] variance propagation algorithm ^ � ]
Monte Carlo "nMC � 099# ^ P ] Monte Carlo "nMC � 0999#[

the agreement between the variance of the temperature
obtained with the variance propagation algorithm and
with the Monte Carlo method is not as good[ This could
be due to the fact that the variance propagation algorithm
only provides a _rst order approximation of the mean
value and covariance matrix of the temperature vector[

The normalized computational times were equal to
295\ 0854 and 08 963 s\ for the variance propagation and
Monte Carlo "099 and 0999 runs#\ respectively[

5[ Conclusions

In this article a variance propagation algorithm was
derived for heat conduction problems with parameters
involving stochastic ~uctuations in time[ The algorithm is
based on the spatial discretization of the heat conduction
equation by means of the _nite element method\ and
involves the simultaneous solution of Sylvester and
Lyapunov di}erential systems[ It was implemented on
top of an existing _nite element code[

The performance of the variance propagation al!
gorithm was compared with that of the direct Monte
Carlo method[ It was shown that at least 0999 Monte
Carlo runs were required to obtain variances with an
acceptable accuracy[ In this case there was a good agree!
ment with the results obtained by means of the variance
propagation algorithm[ However\ the latter was up to six
and 59 times faster than the Monte Carlo method with
099 and 0999 runs\ respectively[
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